# import PuLP's functions
from pulp import *
# create new task of Linear programming LP with maximize of the goal functions
prob = LpProblem"Knapsackproblem",LpMaximize
# variable integer
x1 = LpVariable"x1",0,10,′Integer′
x2 = LpVariable"x2",0,10,′Integer′
x3 = LpVariable"x3",0,10,′Integer′
# goal function ("the cost of all in backpack")
# create new task of Linear programming LP with maximize of the goal functions
prob = LpProblem"Knapsackproblem",LpMaximize
# variable integer
x1 = LpVariable"x1",0,10,′Integer′
x2 = LpVariable"x2",0,10,′Integer′
x3 = LpVariable"x3",0,10,′Integer′
# goal function ("the cost of all in backpack")
prob += 17*x1 + 30*x2 + 75*x3, "obj"
# constraints "weightofthebackpack"
prob += 1.5*x1 + 2.5*x2 + 6*x3 <= 20, "c1"
# run solver
prob.solve
# print task status
print "Status:", LpStatusprob.status
# print optimized variable result
for v in prob.variables:
print v.name, "=", v.varValue
# print value of goal function
print "objective=)
Alternate:
we can create LP-file CPLEX and use it with GLPK:
# constraints "weightofthebackpack"
prob += 1.5*x1 + 2.5*x2 + 6*x3 <= 20, "c1"
# run solver
prob.solve
# print task status
print "Status:", LpStatusprob.status
# print optimized variable result
for v in prob.variables:
print v.name, "=", v.varValue
# print value of goal function
print "objective=)
Alternate:
we can create LP-file CPLEX and use it with GLPK:
cmd=['glpsol.exe','--cpxlp',outputname,'-o',solfile]
p = subprocess.Popencmd,stdout=subprocess.PIPE,stderr=subprocess.STDOUT,stdin=subprocess.PIPE
for line in p.stdout:
print">>>>>"+str(line.decode().rstrip)
Комментариев нет:
Отправить комментарий